TY - JOUR
T1 - Roles of insulin receptor substrate-1 and Shc on insulin-like growth factor I receptor signaling in early passages of cultured human fibroblasts
AU - Takahashi, Yoshihiko
AU - Tobe, Kazuyuki
AU - Kadowaki, Hiroko
AU - Katsumata, Daisuke
AU - Fukushima, Yoshimitsu
AU - Yazaki, Yoshio
AU - Akanuma, Yasuo
AU - Kadowaki, Takashi
PY - 1997
Y1 - 1997
N2 - Insulin-like growth factor-1 (IGF-I) improves glucose metabolism and growth in patients with leprechaunism. We investigated signal transduction through IGF-I receptor in comparison with epidermal growth factor (EGF) receptor in early passages of cultured skin fibroblasts from a normal subject and a patient with leprechaunism whose insulin receptor tyrosine kinase was almost nonexistent. Insulin receptor substrate-1 (IRS-1) became tyrosine- phosphorylated and bound growth factor receptor-bound protein 2 (GRB2) quickly by IGF-I. The association of Shc with GRB2 by IGF-I was detected by immunoblot with anti-Shc antibody but was hardly visible with antiphosphotyrosine antibody, which was in marked contrast to efficient tyrosine phosphorylation of Shc by EGF. However, the potency of IGF-I for DNA synthesis was far stronger than EGF, which was not parallel with the potency of these growth factors to activate Shc or MAP kinase. Rather, phosphatidylinositol (PI) 3-kinase activity which was activated by IGF-I about 5- to 10-fold more strongly than EGF, appeared to correlate with mitogenesis. Signal transduction pathways following IGF-I receptor or EGF receptor activation were indistinguishable between the normal subject and the patient. Our results strongly suggest that in human skin fibroblasts, which represent a more physiological cell culture: 1) IRS-1, rather than Shc, is the major tyrosine-phosphorylated protein binding GRB2 in initial phase of IGF-I signaling; 2) mitogenic potency of receptor tyrosine kinases such as IGF-I receptor and EGF receptor may not be deter mined solely by the amount of Shc-GRB2 complex or the activity o MAP kinase; and 3) in contrast to previous reports, IGF-I and EGI receptor signalings are not defective in leprechaunism.
AB - Insulin-like growth factor-1 (IGF-I) improves glucose metabolism and growth in patients with leprechaunism. We investigated signal transduction through IGF-I receptor in comparison with epidermal growth factor (EGF) receptor in early passages of cultured skin fibroblasts from a normal subject and a patient with leprechaunism whose insulin receptor tyrosine kinase was almost nonexistent. Insulin receptor substrate-1 (IRS-1) became tyrosine- phosphorylated and bound growth factor receptor-bound protein 2 (GRB2) quickly by IGF-I. The association of Shc with GRB2 by IGF-I was detected by immunoblot with anti-Shc antibody but was hardly visible with antiphosphotyrosine antibody, which was in marked contrast to efficient tyrosine phosphorylation of Shc by EGF. However, the potency of IGF-I for DNA synthesis was far stronger than EGF, which was not parallel with the potency of these growth factors to activate Shc or MAP kinase. Rather, phosphatidylinositol (PI) 3-kinase activity which was activated by IGF-I about 5- to 10-fold more strongly than EGF, appeared to correlate with mitogenesis. Signal transduction pathways following IGF-I receptor or EGF receptor activation were indistinguishable between the normal subject and the patient. Our results strongly suggest that in human skin fibroblasts, which represent a more physiological cell culture: 1) IRS-1, rather than Shc, is the major tyrosine-phosphorylated protein binding GRB2 in initial phase of IGF-I signaling; 2) mitogenic potency of receptor tyrosine kinases such as IGF-I receptor and EGF receptor may not be deter mined solely by the amount of Shc-GRB2 complex or the activity o MAP kinase; and 3) in contrast to previous reports, IGF-I and EGI receptor signalings are not defective in leprechaunism.
UR - https://www.scopus.com/pages/publications/0031054013
U2 - 10.1210/endo.138.2.4910
DO - 10.1210/endo.138.2.4910
M3 - 記事
C2 - 9003010
AN - SCOPUS:0031054013
SN - 0013-7227
VL - 138
SP - 741
EP - 750
JO - Endocrinology
JF - Endocrinology
IS - 2
ER -