TY - JOUR
T1 - Respective Involvement of the Right Cerebellar Crus I and II in Syntactic and Semantic Processing for Comprehension of Language
AU - Nakatani, Hironori
AU - Nakamura, Yuko
AU - Okanoya, Kazuo
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2023/8
Y1 - 2023/8
N2 - The right posterolateral portions of the cerebellum (crus-I/II) are involved in language processing. However, their functional role in language remains unknown. The cerebellum is hypothesized to acquire an internal model that is a functional copy of mental representations in the cerebrum and to contribute to cognitive function. In this research, based on the cerebellar internal model hypothesis, we conducted task-based and resting-state functional magnetic resonance imaging (fMRI) experiments to investigate the role of the cerebellum in the syntactic and semantic aspects of comprehension of sentences. In a syntactic task, participants read sentences with center-embedded hierarchical structures. The hierarchical level-dependent activity was found in the right crus-I as well as Broca’s area (p < 0.05, voxel-based small volume correction (SVC)). In a semantic task, the participants read three types of sentences for investigation of sentence-level, phrase-level, and word-level semantic processing. The semantic level-dependent activity was found in the right crus-II as well as in the left anterior temporal lobe and the left angular gyrus (p < 0.05, voxel-based SVC). Moreover, the right crus-I/II showed significant activity when the cognitive load was high. Resting-state fMRI demonstrated intrinsic functional connectivity between the right crus-I/II and language-related regions in the left cerebrum (p < 0.05, voxel-based SVC). These findings suggest that the right crus-I and crus-II are involved, respectively, in the syntactic and semantic aspects of sentence processing. The cerebellum assists processing of language in the cerebrum when the cognitive load is high.
AB - The right posterolateral portions of the cerebellum (crus-I/II) are involved in language processing. However, their functional role in language remains unknown. The cerebellum is hypothesized to acquire an internal model that is a functional copy of mental representations in the cerebrum and to contribute to cognitive function. In this research, based on the cerebellar internal model hypothesis, we conducted task-based and resting-state functional magnetic resonance imaging (fMRI) experiments to investigate the role of the cerebellum in the syntactic and semantic aspects of comprehension of sentences. In a syntactic task, participants read sentences with center-embedded hierarchical structures. The hierarchical level-dependent activity was found in the right crus-I as well as Broca’s area (p < 0.05, voxel-based small volume correction (SVC)). In a semantic task, the participants read three types of sentences for investigation of sentence-level, phrase-level, and word-level semantic processing. The semantic level-dependent activity was found in the right crus-II as well as in the left anterior temporal lobe and the left angular gyrus (p < 0.05, voxel-based SVC). Moreover, the right crus-I/II showed significant activity when the cognitive load was high. Resting-state fMRI demonstrated intrinsic functional connectivity between the right crus-I/II and language-related regions in the left cerebrum (p < 0.05, voxel-based SVC). These findings suggest that the right crus-I and crus-II are involved, respectively, in the syntactic and semantic aspects of sentence processing. The cerebellum assists processing of language in the cerebrum when the cognitive load is high.
KW - Cerebellum
KW - Functional connectivity
KW - Functional magnetic resonance imagings
KW - Internal model
KW - Language
UR - http://www.scopus.com/inward/record.url?scp=85135594033&partnerID=8YFLogxK
U2 - 10.1007/s12311-022-01451-y
DO - 10.1007/s12311-022-01451-y
M3 - 記事
C2 - 35927417
AN - SCOPUS:85135594033
SN - 1473-4222
VL - 22
SP - 739
EP - 755
JO - Cerebellum
JF - Cerebellum
IS - 4
ER -